A História da Matemática na Educação Matemática
De acordo com Miguel (2004), o recurso à História como uma tentativa de dar significado ao ensino da Matemática aparece nos livros didáticos brasileiros de Matemática do final do século XIX e começo do XX, a exemplo do que já ocorria na Europa um século antes, com a publicação da obra Elements de géométrie, de Aléxis Claude Clairaut, em 1741. Era manifestado pela apresentação de métodos produzidos historicamente ou de observações sobre temas e personagens da história da matemática e sofreu forte influência positivista, ao mesmo tempo em que utilizavam uma versão do "princípio genético" para o ensino da Matemática.
O "princípio genético" tem origem em uma lei biogenética defendida por Ernst Haeckel (1834-1919), que faz a seguinte afirmação: "a ontogenia recapitula a filogenia", ou seja, o desenvolvimento do embrião humano retraça os estágios pelos quais seus ancestrais adultos haviam passado. Em pedagogia, tal princípio é ligado à idéia de que o aluno percorre em seu aprendizado as mesmas etapas historicamente percorridas para a construção de um conceito. Vários matemáticos famosos se apresentaram partidários do uso pedagógico desse princípio, como Henri Poincaré (1854-1912) e Félix Klein (1849-1925) e concebiam a Matemática como uma acumulação linear e hierárquica de conhecimentos que deveriam ser recapitulados na escola nos processos de ensino-aprendizagem.
Piaget também adotou o princípio genético em seus trabalhos e escreveu, juntamente com Rolando Garcia, o livro Psicogênese e História das Ciências (1982). Nesse livro, os autores defendem a tese de que a construção do conhecimento se dá da mesma maneira nos planos psicogenéticos e filogenéticos, através de mecanismos que denominam abstração reflexiva e generalização completiva. Com tais mecanismos de passagem, o aprendiz adaptaria o saber constituído aos seus conhecimentos prévios para construir conhecimentos novos usando os processos de assimilação, acomodação e equilibração. Assim, para aprender Matemática o sujeito teria que reconstruir as mesmas operações cognitivas que marcaram a construção histórica dos objetos matemáticos, que abstraídos de suas situações concretas se tornariam exclusivamente objetos formais. O recurso à História da Matemática se apresentava como uma opção para a busca de conflitos cognitivos que possibilitassem a passagem de uma etapa da construção do conhecimento para outra de nível superior. Sob esta perspectiva teórica, a produção cultural das idéias da Matemática é tratada de uma forma internalista e estruturada, desligada de qualquer contexto, da mesma forma que se desconsidera o condicionamento sócio-cultural no desenvolvimento cognitivo do indivíduo.
Em busca de um enfoque mais sistêmico da didática da Matemática, Brousseau parte da noção de obstáculo epistemológico criada por Bachelard e constrói a Teoria das Situações Didáticas. Nela são consideradas as relações criadas em uma situação didática entre o aluno (ou os alunos), o entorno e o professor por um problema estabelecido para a reconstrução de um conhecimento. Nesse sentido, a aprendizagem por adaptação ao meio implica em rupturas cognitivas, acomodações e mudanças nos sistemas cognitivos, no uso da linguagem e nas concepções prévias. Apesar de adotar uma perspectiva piagetiana ao admitir a construção do conhecimento pela interação entre o sujeito e o objeto, a teoria da situação didática dá importância à gestão do professor da interação entre o subsistema aluno-saber e a situação-problema apresentada, o que acrescenta uma dimensão situacional ao processo de ensino-aprendizagem. A História da Matemática, nessa perspectiva, permitiria identificar os obstáculos epistemológicos superados na construção histórica de um conceito e os transformar em situações-problemas que permitissem a reconstrução do conhecimento matemático, ou seja, seria uma fonte de busca de problemas.
Para Miguel (2004), as novas perspectivas teóricas em construção no campo de investigação História na Educação Matemática defendem uma abordagem sociocultural que considere os significados em seus contextos específicos. A maior crítica é dirigida ao princípio recapitulacionista, que provoca um reducionismo de natureza sociológica ao identificar a cultura como algo externo, fonte de estímulos para desenvolvimentos conceituais e a cognição como algo interno, mero reflexo da cultura. O recurso à História da Matemática deve ser, então, baseado em um diálogo do passado com o presente e interpretado dentro das práticas sociais em que tal passado se achava envolvido. Desse modo, se deixaria de subordinar o presente ao passado e ao mesmo tempo de se fazer uma leitura da evolução dos conceitos da maneira que se acredita que eles tenham acontecido, derrubando a visão internalista do desenvolvimento da Matemática que essa leitura pressupõe.
Concordando com as proposições de Miguel (2004), procuramos definir o papel psicológico da História da Matemática na Educação Matemática. Ao ponderarmos sobre a importância das crenças, dos valores e da emoção nos aspectos cognitivos envolvidos no ensino e na aprendizagem da Matemática, não podemos nos furtar a esse exame das práticas sociais nas quais ocorreu o desenvolvimento da Matemática que hoje conhecemos. Sob essa perspectiva, as problematizações permitidas pelo conhecimento histórico da construção do conhecimento matemático são muito amplas e podem enfocar diversos aspectos, entre os quais:
1. procurar reproduzir em sala de aula o processo de criação da Matemática, apresentando as informações fundamentais para se entender a lógica de um determinado desenvolvimento;
2. conseguir apresentar uma significação para o tópico a ser apresentado e ao mesmo tempo justificar o simbolismo necessário ao formalismo da Matemática, para motivar o aluno a prosseguir seus estudos;
3. oferecer uma visão de conjunto da Matemática, ao favorecer as ligações entre as diversas temáticas sem o rigor característico da Matemática do presente, através das aplicações práticas que ocorreram na evolução histórica da Matemática;
4. atribuir a produção cultural da sociedade não exclusivamente a quem finalmente resolveu um problema, mas ao esforço e à criatividade de conjuntos de toda comunidade;
5. apresentar a Matemática como uma ciência em construção, mostrando os equívocos ocorridos durante o seu desenvolvimento como parte da natureza da atividade Matemática;
6. resgatar a identidade cultural da sociedade, através de uma compreensão externalista da História da Matemática;
7. revelar os fundamentos da Matemática;
8. contribuir para a formação de um pensamento independente e crítico sobre a construção histórica da Matemática.
Assim, a História da Matemática apresenta um potencial pedagógico muito grande e, mais especificamente, apresenta a possibilidade de trabalharmos os afetos envolvidos no processo de ensino aprendizagem de uma maneira positiva, podendo colaborar para quebrar o ciclo de exclusão em relação à matemática escolar que encontramos hoje. . O aluno, ao tomar contato com as produções de diferentes épocas e culturas, pode ressignificá-las com base em suas próprias experiências e estabelecer uma atividade dialógica com as diferentes características da linguagem matemática (natureza teórica e sistemática, coerência interna, procedimentos lógicos e lingüísticos ligados a uma axiomática própria, entre outras), que não se manifestam no conhecimento construído na escola.