quarta-feira, 18 de agosto de 2010

O papel psicológico da História da Matemática no processo de ensino-aprendizagem

A Matemática, sabidamente, provoca diversas emoções em alunos e professores: é motivo de paixão e de desespero, de encanto e de desilusão, de euforia e de nihilismo. As crenças, os valores, a aceitação social e outros fatores não menos importantes condicionam todo processo de ensino-aprendizagem escolar dessa disciplina e podem favorecer ou dificultar as diversas etapas percorridas pelo aluno e pelo professor durante o encaminhamento dos trabalhos.

A Educação relaciona-se com a Psicologia ao buscar como e quando ensinar e na comunidade internacional de pesquisadores em Educação Matemática encontramos uma forte pressão da perspectiva psicológica no estudo dos processos de ensino e aprendizagem da Matemática (Godino, 2003, p. 12).

Na busca por melhores opções pedagógicas de abordagem de conteúdos, grupos de pesquisa em Educação Matemática discutem as diversas maneiras de problematização de situações que tornem o ensino mais significativo para o aluno e a História da Matemática fornece uma riqueza de opções que a torna um campo de estudo e de pesquisas cada vez mais profícuo.

A História da Matemática pode exercer um importante papel psicológico no processo de ensino-aprendizagem tanto em relação ao professor quanto em relação ao aluno. Ao estudante pode propiciar condições de perceber as diversas etapas da construção do pensamento Matemático, entender as diferentes práticas sociais que geraram as necessidades de sua produção e trabalhar as diversas linguagens e formas simbólicas que o constituem e o condicionam. Ao professor, permite problematizar a ação pedagógica no sentido de se criar uma consciência das vivências e recursos cognitivos e interpretativos necessários para uma apropriação significativa das idéias matemáticas.

As diversas contribuições da História da Matemática na Educação Matemática podem ser assim resumidas: apresentar a importância das muitas formas de atividade intelectual, negar o pressuposto de uma Matemática pronta e acabada e apresentá-la com uma ciência em construção, mostrar os caminhos percorridos na criação da Matemática que temos hoje e as outras possibilidades de sua construção, apresentar o erro como uma tentativa de resolução e não como uma falha, etc.

Nesse trabalho, procuraremos qual o papel psicológico que a História da Matemática pode exercer na Educação Matemática e quais são suas implicações na prática pedagógica. Para tanto, apresentaremos a dimensão emocional em Educação Matemática, alguns aspectos da História da Matemática na Educação Matemática e as ligações que encontramos entre essas diferentes perspectivas.

A importância das crenças no processo de ensino e aprendizagem de Matemática

O nível de consciência das próprias crenças e da influência do contexto social são fatores decisivos nas práticas de ensino e indicam o modo de proceder do professor. Em relação ao aluno, as crenças sobre a aprendizagem matemática são influenciadas pelo que consideram como prioridades: dominar procedimentos básicos, memorizar algoritmos, consciência da utilidade da Matemática, valorização do aprendizado como habilidade para progredir na vida, obter confiança em si mesmo e reforçar sua imagem em relação ao grupo, etc.

É no entrelaçar da cognição e do afeto que pretendemos focar nossa atenção. As crenças trazidas para o contexto da sala de aula irão interferir na atribuição de significados para as diferentes tarefas e colaborar ou não para a compreensão das atividades desenvolvidas. Assim, após definir contexto interativo como aquele no qual se evocam percepções individuais das exigências da tarefa (por exemplo, o contexto escolar, o contexto da vida cotidiana, etc.) e contexto figurativo como o que está descrito na tarefa, Chacón acrescenta:

"Todas as tarefas estão socialmente situadas, mas o contexto da tarefa é conseqüência da construção e da resposta do indivíduo. O contexto pessoal da tarefa como resultado da inter-relação entre o contexto "interativo" e o "figurativo" toma a forma de uma representação cognitiva, por meio da qual o indivíduo atribui significado pessoal para a tarefa e compreende o processo de resolução de problemas." (Chacón, 2003, p.85).

Dentro da perspectiva da psicologia cultural, também consideramos esclarecedora a apresentação de Galvão (2003, p. 90):

"Em suma, a posição aqui exposta, acerca do que define um indivíduo como um ser cultural, é a de que a cultura provê um sistema simbólico para interpretação e organização da experiência, assim como para conferir significado à vida. O indivíduo, por ser ativo nessa interpretação e organização de sua experiência, se diferencia dos demais em vários aspectos de seu funcionamento psíquico, não sendo assim determinado pela cultura. Esta, por sua vez, como resultado de uma história de criação coletiva, não se reduz à soma das contribuições individuais."

Com isso, esperamos que fique clara a importância da "construção do contexto" para facilitar a compreensão dos conceitos em Matemática. Também podemos verificar que as diferentes fases da resolução de uma tarefa mostram como a dimensão emocional interage com a cognição: as idas e vindas, as rotas alternativas de resolução e as alterações de ânimo encontradas nas diversas etapas do trabalho são alguns exemplos. Assim, quando as tarefas são significativas para o aluno favorecem o acesso ao conhecimento matemático, permitem a apropriação dos conceitos e motivam o aprender. Tendo tais pressupostos em vista, e, além disso, considerando a importância de se caminhar na construção dos conceitos matemáticos com saltos qualitativos em compreensão acessíveis ao aluno, procuraremos explicitar alguns dos valores didáticos da História da Matemática na Educação Matemática em termos individuais e culturais.

A História da Matemática na Educação Matemática

De acordo com Miguel (2004), o recurso à História como uma tentativa de dar significado ao ensino da Matemática aparece nos livros didáticos brasileiros de Matemática do final do século XIX e começo do XX, a exemplo do que já ocorria na Europa um século antes, com a publicação da obra Elements de géométrie, de Aléxis Claude Clairaut, em 1741. Era manifestado pela apresentação de métodos produzidos historicamente ou de observações sobre temas e personagens da história da matemática e sofreu forte influência positivista, ao mesmo tempo em que utilizavam uma versão do "princípio genético" para o ensino da Matemática.

O "princípio genético" tem origem em uma lei biogenética defendida por Ernst Haeckel (1834-1919), que faz a seguinte afirmação: "a ontogenia recapitula a filogenia", ou seja, o desenvolvimento do embrião humano retraça os estágios pelos quais seus ancestrais adultos haviam passado. Em pedagogia, tal princípio é ligado à idéia de que o aluno percorre em seu aprendizado as mesmas etapas historicamente percorridas para a construção de um conceito. Vários matemáticos famosos se apresentaram partidários do uso pedagógico desse princípio, como Henri Poincaré (1854-1912) e Félix Klein (1849-1925) e concebiam a Matemática como uma acumulação linear e hierárquica de conhecimentos que deveriam ser recapitulados na escola nos processos de ensino-aprendizagem.

Piaget também adotou o princípio genético em seus trabalhos e escreveu, juntamente com Rolando Garcia, o livro Psicogênese e História das Ciências (1982). Nesse livro, os autores defendem a tese de que a construção do conhecimento se dá da mesma maneira nos planos psicogenéticos e filogenéticos, através de mecanismos que denominam abstração reflexiva e generalização completiva. Com tais mecanismos de passagem, o aprendiz adaptaria o saber constituído aos seus conhecimentos prévios para construir conhecimentos novos usando os processos de assimilação, acomodação e equilibração. Assim, para aprender Matemática o sujeito teria que reconstruir as mesmas operações cognitivas que marcaram a construção histórica dos objetos matemáticos, que abstraídos de suas situações concretas se tornariam exclusivamente objetos formais. O recurso à História da Matemática se apresentava como uma opção para a busca de conflitos cognitivos que possibilitassem a passagem de uma etapa da construção do conhecimento para outra de nível superior. Sob esta perspectiva teórica, a produção cultural das idéias da Matemática é tratada de uma forma internalista e estruturada, desligada de qualquer contexto, da mesma forma que se desconsidera o condicionamento sócio-cultural no desenvolvimento cognitivo do indivíduo.

Em busca de um enfoque mais sistêmico da didática da Matemática, Brousseau parte da noção de obstáculo epistemológico criada por Bachelard e constrói a Teoria das Situações Didáticas. Nela são consideradas as relações criadas em uma situação didática entre o aluno (ou os alunos), o entorno e o professor por um problema estabelecido para a reconstrução de um conhecimento. Nesse sentido, a aprendizagem por adaptação ao meio implica em rupturas cognitivas, acomodações e mudanças nos sistemas cognitivos, no uso da linguagem e nas concepções prévias. Apesar de adotar uma perspectiva piagetiana ao admitir a construção do conhecimento pela interação entre o sujeito e o objeto, a teoria da situação didática dá importância à gestão do professor da interação entre o subsistema aluno-saber e a situação-problema apresentada, o que acrescenta uma dimensão situacional ao processo de ensino-aprendizagem. A História da Matemática, nessa perspectiva, permitiria identificar os obstáculos epistemológicos superados na construção histórica de um conceito e os transformar em situações-problemas que permitissem a reconstrução do conhecimento matemático, ou seja, seria uma fonte de busca de problemas.

Para Miguel (2004), as novas perspectivas teóricas em construção no campo de investigação História na Educação Matemática defendem uma abordagem sociocultural que considere os significados em seus contextos específicos. A maior crítica é dirigida ao princípio recapitulacionista, que provoca um reducionismo de natureza sociológica ao identificar a cultura como algo externo, fonte de estímulos para desenvolvimentos conceituais e a cognição como algo interno, mero reflexo da cultura. O recurso à História da Matemática deve ser, então, baseado em um diálogo do passado com o presente e interpretado dentro das práticas sociais em que tal passado se achava envolvido. Desse modo, se deixaria de subordinar o presente ao passado e ao mesmo tempo de se fazer uma leitura da evolução dos conceitos da maneira que se acredita que eles tenham acontecido, derrubando a visão internalista do desenvolvimento da Matemática que essa leitura pressupõe.

Concordando com as proposições de Miguel (2004), procuramos definir o papel psicológico da História da Matemática na Educação Matemática. Ao ponderarmos sobre a importância das crenças, dos valores e da emoção nos aspectos cognitivos envolvidos no ensino e na aprendizagem da Matemática, não podemos nos furtar a esse exame das práticas sociais nas quais ocorreu o desenvolvimento da Matemática que hoje conhecemos. Sob essa perspectiva, as problematizações permitidas pelo conhecimento histórico da construção do conhecimento matemático são muito amplas e podem enfocar diversos aspectos, entre os quais:

1. procurar reproduzir em sala de aula o processo de criação da Matemática, apresentando as informações fundamentais para se entender a lógica de um determinado desenvolvimento;

2. conseguir apresentar uma significação para o tópico a ser apresentado e ao mesmo tempo justificar o simbolismo necessário ao formalismo da Matemática, para motivar o aluno a prosseguir seus estudos;

3. oferecer uma visão de conjunto da Matemática, ao favorecer as ligações entre as diversas temáticas sem o rigor característico da Matemática do presente, através das aplicações práticas que ocorreram na evolução histórica da Matemática;

4. atribuir a produção cultural da sociedade não exclusivamente a quem finalmente resolveu um problema, mas ao esforço e à criatividade de conjuntos de toda comunidade;

5. apresentar a Matemática como uma ciência em construção, mostrando os equívocos ocorridos durante o seu desenvolvimento como parte da natureza da atividade Matemática;

6. resgatar a identidade cultural da sociedade, através de uma compreensão externalista da História da Matemática;

7. revelar os fundamentos da Matemática;

8. contribuir para a formação de um pensamento independente e crítico sobre a construção histórica da Matemática.

Assim, a História da Matemática apresenta um potencial pedagógico muito grande e, mais especificamente, apresenta a possibilidade de trabalharmos os afetos envolvidos no processo de ensino aprendizagem de uma maneira positiva, podendo colaborar para quebrar o ciclo de exclusão em relação à matemática escolar que encontramos hoje. . O aluno, ao tomar contato com as produções de diferentes épocas e culturas, pode ressignificá-las com base em suas próprias experiências e estabelecer uma atividade dialógica com as diferentes características da linguagem matemática (natureza teórica e sistemática, coerência interna, procedimentos lógicos e lingüísticos ligados a uma axiomática própria, entre outras), que não se manifestam no conhecimento construído na escola.